Relationship between unconstrained arm movements and single-neuron firing in the macaque motor cortex.

نویسندگان

  • Tyson N Aflalo
  • Michael S A Graziano
چکیده

The activity of single neurons in the monkey motor cortex was studied during semi-naturalistic, unstructured arm movements made spontaneously by the monkey and measured with a high resolution three-dimensional tracking system. We asked how much of the total neuronal variance could be explained by various models of neuronal tuning to movement. On average, tuning to the speed of the hand accounted for 1% of the total variance in neuronal activity, tuning to the direction of the hand in space accounted for 8%, a more complex model of direction tuning, in which the preferred direction of the neuron rotated with the starting position of the arm, accounted for 13%, tuning to the final position of the hand in Cartesian space accounted for 22%, and tuning to the final multijoint posture of the arm accounted for 36%. One interpretation is that motor cortex neurons are significantly tuned to many control parameters important in the animal's repertoire, but that different control parameters are represented in different proportion, perhaps reflecting their prominence in everyday action. The final posture of a movement is an especially prominent control parameter although not the only one. A common mode of action of the monkey arm is to maintain a relatively stable overall posture while making local adjustments in direction during performance of a task. One speculation is that neurons in motor cortex reflect this pattern in which direction tuning predominates in local regions of space and postural tuning predominates over the larger workspace.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Single-Trial Neural Correlates of Arm Movement Preparation

The process by which neural circuitry in the brain plans and executes movements is not well understood. Until recently, most available data were limited either to single-neuron electrophysiological recordings or to measures of aggregate field or metabolism. Neither approach reveals how individual neurons' activities are coordinated within the population, and thus inferences about how the neural...

متن کامل

Correlations between the same motor cortex cells and arm muscles during a trained task, free behavior, and natural sleep in the macaque monkey.

Traditionally, the neural control of movement has been studied by recording cell activity in restrained animals performing repetitive, highly trained tasks within a restricted workspace. However, the degree to which results obtained under these conditions are valid during natural, unconstrained behavior remains unknown. Using an autonomous, implantable recording system, we examined the relation...

متن کامل

Neural discharge and local field potential oscillations in primate motor cortex during voluntary movements.

The role of "fast," or gamma band (20-80 Hz), local field potential (LFP) oscillations in representing neuronal activity and in encoding motor behavior was examined in motor cortex of two alert monkeys. Using chronically implanted microwires, we simultaneously recorded LFPs and single or multiple unit (MU) discharge at a group of sites in the precentral gyrus during trained finger force or reac...

متن کامل

Stable ensemble performance with single-neuron variability during reaching movements in primates.

Significant variability in firing properties of individual neurons was observed while two monkeys, chronically implanted with multielectrode arrays in frontal and parietal cortical areas, performed a continuous arm movement task. Although the degree of correlation between the firing of single neurons and movement parameters was nonstationary, stable predictions of arm movements could be obtaine...

متن کامل

Cortical representation of bimanual movements.

It is well established that the discharge of neurons in primate motor cortex is tuned to the movement direction of the contralateral arm. Interestingly, it has been found that these neurons exhibit a directional tuning to the ipsilateral arm as well and that the preferred directions to both arms tend to be similar. A recent study showed that motor cortex cells are also directionally selective t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 27 11  شماره 

صفحات  -

تاریخ انتشار 2007